acwing-384. 升降梯上

考点

  • 最短路
  • 分层图

题解

见思路

思路

f代表层下标,k代表槽下标,c[k]代表第k个槽的变量,起点等于(第一层, 槽变量等于0的下标) = (1, st)

d[f][k]代表从起点(1, st)(f, k)的单源最短路,题目要找的是d[n][...]的最小值

很显然这是一个分层图最短路,每一个状态有以下分支:

  1. 选择扳手柄

    1
    2
    3
    4
    5
    6
    for (int i = 1; i <= m; ++i) {
    if (d[f][i] > d[f][k] + abs(i - k)) {
    d[f][i] = d[f][k] + abs(i - k);
    q.push({-d[f][i], {f, i}});
    }
    }
  2. 选择升降电梯

    1
    2
    3
    4
    if (valid(f, k) && d[f + c[k]][k] > d[f][k] + abs(2 * c[k])) {
    d[f + c[k]][k] = d[f][k] + abs(2 * c[k]);
    q.push({-d[f + c[k]][k], {f + c[k], k}});
    }

SPFA实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <bits/stdc++.h>
using namespace std;
const int maxn = 30, maxm = 1e3 + 50;
int n, m, st;
// d[f][k]:层下标f槽下标k,求(1,st)到(n,...)的单源最短路
int c[maxn], d[maxm][maxn];
bool v[maxm][maxn];

bool valid(int f, int k) { return f + c[k] >= 1 && f + c[k] <= n; }

void spfa() {
memset(d, 0x3f, sizeof(d));
queue<pair<int, int>> q;
d[1][st] = 0, v[1][st] = 1;
q.push({1, st});
while (!q.empty()) {
int f = q.front().first, k = q.front().second;
q.pop();
v[f][k] = 0;
// 改变槽的情况
for (int i = 1; i <= m; ++i) {
if (d[f][i] > d[f][k] + abs(i - k)) {
d[f][i] = d[f][k] + abs(i - k);
if (!v[f][i]) {
v[f][i] = 1;
q.push({f, i});
}
}
}
// 改变电梯的情况
if (valid(f, k) && d[f + c[k]][k] > d[f][k] + abs(2 * c[k])) {
d[f + c[k]][k] = d[f][k] + abs(2 * c[k]);
if (!v[f + c[k]][k]) {
v[f + c[k]][k] = 1;
q.push({f + c[k], k});
}
}
}
int ans = 0x3f3f3f3f;
for (int i = 1; i <= m; ++i) ans = min(ans, d[n][i]);
cout << (ans == 0x3f3f3f3f ? -1 : ans) << endl;
}

int main() {
cin >> n >> m;
for (int i = 1; i <= m; ++i) {
cin >> c[i];
if (c[i] == 0) st = i;
}
spfa();
return 0;
}

Dijkstra实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <bits/stdc++.h>
using namespace std;
const int maxn = 30, maxm = 1e3 + 50;
int n, m, st;
// d[f][k]:层下标f槽下标k,求(1,st)到(n,...)的单源最短路
int c[maxn], d[maxm][maxn];
bool v[maxm][maxn];

bool valid(int f, int k) { return f + c[k] >= 1 && f + c[k] <= n; }

void dijkstra() {
memset(d, 0x3f, sizeof(d));
priority_queue<pair<int, pair<int, int>>> q;
d[1][st] = 0;
q.push({0, {1, st}});
while (!q.empty()) {
int f = q.top().second.first, k = q.top().second.second;
q.pop();
if (v[f][k]) continue;
v[f][k] = 1;
// 改变槽的情况
for (int i = 1; i <= m; ++i) {
if (d[f][i] > d[f][k] + abs(i - k)) {
d[f][i] = d[f][k] + abs(i - k);
q.push({-d[f][i], {f, i}});
}
}
// 改变电梯的情况
if (valid(f, k) && d[f + c[k]][k] > d[f][k] + abs(2 * c[k])) {
d[f + c[k]][k] = d[f][k] + abs(2 * c[k]);
q.push({-d[f + c[k]][k], {f + c[k], k}});
}
}
int ans = 0x3f3f3f3f;
for (int i = 1; i <= m; ++i) ans = min(ans, d[n][i]);
cout << (ans == 0x3f3f3f3f ? -1 : ans) << endl;
}

int main() {
cin >> n >> m;
for (int i = 1; i <= m; ++i) {
cin >> c[i];
if (c[i] == 0) st = i;
}
dijkstra();
return 0;
}