P2415. 集合求和
考点
- 排列组合
题解
1 |
|
思路
对于每个元素x
来说,它对子集和的贡献为: \[
x\cdot \left( \underset{\text{只含自己}}{\left( \begin{array}{c}
n-1\\
0\\
\end{array} \right)}+\underset{\text{选}1\text{个匹配}}{\left(
\begin{array}{c}
n-1\\
1\\
\end{array} \right)}+\underset{\text{选}2\text{个匹配}}{\left(
\begin{array}{c}
n-1\\
2\\
\end{array} \right)}+\cdots +\underset{\text{选}n-1\text{个匹配}}{\left(
\begin{array}{c}
n-1\\
n-1\\
\end{array} \right)} \right)
\] 显然可以变成: \[
x\cdot 2^{n-1}
\] 那么最终的子集和就是: \[
2^{n-1}\cdot \sum{\begin{array}{c}
n\\
i=1\\
\end{array}x_i}
\]