P2880. Balanced Lineup G

考点

  • 倍增
  • ST表

题解

见思路

思路

ST表的模板题,直接上《深进》的截图咯。

区间重叠方式

原理

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5e4 + 50;
int n, q, a[maxn], mx[maxn][20], mi[maxn][20], log_2[maxn];

void init() {
for (int i = 1; i <= n; ++i) cin >> a[i];
// ST表预处理
for (int i = 1; i <= n; ++i) mx[i][0] = mi[i][0] = a[i];
for (int j = 1; (1 << j) <= n; ++j) {
for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
mx[i][j] = max(mx[i][j - 1], mx[i + (1 << (j - 1))][j - 1]);
mi[i][j] = min(mi[i][j - 1], mi[i + (1 << (j - 1))][j - 1]);
}
}
// log预处理
for (int i = 2; i <= n; ++i) log_2[i] = log_2[i >> 1] + 1;
}

int query_max(int l, int r) {
int k = log_2[r - l + 1];
return max(mx[l][k], mx[r - (1 << k) + 1][k]);
}

int query_min(int l, int r) {
int k = log_2[r - l + 1];
return min(mi[l][k], mi[r - (1 << k) + 1][k]);
}

int main() {
// 区间重叠方式求RMQ
int l, r, k;
cin >> n >> q;
init();
while (q--) {
cin >> l >> r;
cout << query_max(l, r) - query_min(l, r) << endl;
}
return 0;
}

区间不重不漏方式(很重要!)

原理

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5e4 + 50;
int n, q, a[maxn], mx[maxn][20], mi[maxn][20];

void init() {
for (int i = 1; i <= n; ++i) cin >> a[i];
// ST表预处理
for (int i = 1; i <= n; ++i) mx[i][0] = mi[i][0] = a[i];
for (int j = 1; (1 << j) <= n; ++j) {
for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
mx[i][j] = max(mx[i][j - 1], mx[i + (1 << (j - 1))][j - 1]);
mi[i][j] = min(mi[i][j - 1], mi[i + (1 << (j - 1))][j - 1]);
}
}
}

int query_max(int l, int r) {
int k = r - l + 1, ans = 0xc0c0c0c0;
for (int i = 0, j = l; (1 << i) <= k; ++i) {
if ((k >> i) & 1) {
ans = max(ans, mx[j][i]);
j += (1 << i);
}
}
return ans;
}

int query_min(int l, int r) {
int k = r - l + 1, ans = 0x3f3f3f3f;
for (int i = 0, j = l; (1 << i) <= k; ++i) {
if ((k >> i) & 1) {
ans = min(ans, mi[j][i]);
j += (1 << i);
}
}
return ans;
}

int main() {
// 区间不重不漏方式求RMQ
int l, r, k;
cin >> n >> q;
init();
while (q--) {
cin >> l >> r;
cout << query_max(l, r) - query_min(l, r) << endl;
}
return 0;
}