P1255. 数楼梯

考点

  • 斐波那契
  • 递推
  • 高精度

题解

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <bits/stdc++.h>

using namespace std;

class BigInt
{
public:
int len_;
int arr_[2500];
BigInt(string s = "")
{
memset(arr_, 0, sizeof(arr_));
len_ = s.length();
for (int i = 1; i <= len_; ++i)
arr_[i] += s[len_ - i] - '0';
}
int &operator[](int x)
{
return arr_[x];
}
void flatten(int x)
{
len_ = x;
for (int i = 1; i <= x; ++i)
{
if (arr_[i] >= 10)
{
arr_[i + 1] += arr_[i] / 10;
arr_[i] %= 10;
}
}
while (!arr_[len_])
--len_;
}
void print()
{
for (int i = max(1, len_); i >= 1; --i)
cout << arr_[i];
}
};

BigInt operator+(BigInt a, BigInt b)
{
BigInt c;
int len = max(a.len_, b.len_);
for (int i = 1; i <= len; ++i)
{
c[i] += a[i] + b[i];
}
c.flatten(len + 1);
return c;
}

int main()
{

int n;
cin >> n;
BigInt a("1"), b("2");
if (n == 1)
a.print();
else if (n == 2)
b.print();
else
{
for (int i = 3; i <= n; ++i)
{
BigInt c = a + b;
a = b;
b = c;
}
b.print();
}
return 0;
}

思路

每个状态都是由前状态和前前状态相加而成,典型的斐波那契数列呀!配合高精度直接递推计算即可